Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Sign In Register

Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

What is Peer-to-peer network ?

Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions tasks or work loads between peers. Peers are equally privileged, equipotent participants in the application. They are said to form a peer-to-peer network of nodes.

Peers make a portion of their resources, such as processing power, disk storage or network bandwidth, directly available to other network participants, without the need for central coordination by servers or stable hosts. Peers are both suppliers and consumers of resources, in contrast to the traditional client-server model in which the consumption and supply of resources is divided. Emerging collaborative P2P systems are going beyond the era of peers doing similar things while sharing resources, and are looking for diverse peers that can bring in unique resources and capabilities to a virtual community thereby empowering it to engage in greater tasks beyond those that can be accomplished by individual peers, yet that are beneficial to all the peers.

While P2P systems had previously been used in many application domains, the architecture was popularized by the file sharing system Napster, originally released in 1999. The concept has inspired new structures and philosophies in many areas of human interaction. In such social contexts, peer-to-peer as a meme refers to the egalitarian social networking that has emerged throughout society, enabled by Internet technologies in general.

Historical development

While P2P systems had previously been used in many application domains, the concept was popularized by file sharing systems such as the music-sharing application Napster (originally released in 1999).[citation needed] The peer-to-peer movement allowed millions of Internet users to connect "directly, forming groups and collaborating to become user-created search engines, virtual supercomputers, and filesystems."  The basic concept of peer-to-peer computing was envisioned in earlier software systems and networking discussions, reaching back to principles stated in the first Request for Comments, RFC 1.

Tim Berners-Lee's vision for the World Wide Web was close to a P2P network in that it assumed each user of the web would be an active editor and contributor, creating and linking content to form an interlinked "web" of links. The early Internet was more open than present day, where two machines connected to the Internet could send packets to each other without firewalls and other security measures.This contrasts to the broadcasting-like structure of the web as it has developed over the years. As a precursor to the Internet, ARPANET was a successful client-server network where "every participating node could request and serve content." However, ARPANET was not self-organized, and it lacked the ability to "provide any means for context or content-based routing beyond 'simple' address-based routing."

Therefore, a distributed messaging system that is often likened as an early peer-to-peer architecture was established: USENET. USENET was developed in 1979 and is a system that enforces a decentralized model of control. The basic model is a client-server model from the user or client perspective that offers a self-organizing approach to newsgroup servers. However, news servers communicate with one another as peers to propagate Usenet news articles over the entire group of network servers. The same consideration applies to SMTP email in the sense that the core email-relaying network of mail transfer agents has a peer-to-peer character, while the periphery of e-mail clients and their direct connections is strictly a client-server relationship.[citation needed]

In May 1999, with millions more people on the Internet, Shawn Fanning introduced the music and file-sharing application called Napster. Napster was the beginning of peer-to-peer networks, as we know them today, where "participating users establish a virtual network, entirely independent from the physical network, without having to obey any administrative authorities or restrictions."


A peer-to-peer network is designed around the notion of equal peer nodes simultaneously functioning as both "clients" and "servers" to the other nodes on the network. This model of network arrangement differs from the client–server model where communication is usually to and from a central server. A typical example of a file transfer that uses the client-server model is the File Transfer Protocol (FTP) service in which the client and server programs are distinct: the clients initiate the transfer, and the servers satisfy these requests.

Routing and resource discovery

Peer-to-peer networks generally implement some form of virtual overlay network on top of the physical network topology, where the nodes in the overlay form a subset of the nodes in the physical network. Data is still exchanged directly over the underlying TCP/IP network, but at the application layer peers are able to communicate with each other directly, via the logical overlay links (each of which corresponds to a path through the underlying physical network). Overlays are used for indexing and peer discovery, and make the P2P system independent from the physical network topology. Based on how the nodes are linked to each other within the overlay network, and how resources are indexed and located, we can classify networks as unstructured or structured (or as a hybrid between the two).

Unstructured networks

Overlay network diagram for an unstructured P2P network, illustrating the ad hoc nature of the connections between nodes

Unstructured peer-to-peer networks do not impose a particular structure on the overlay network by design, but rather are formed by nodes that randomly form connections to each other. (Gnutella, Gossip, and Kazaa are examples of unstructured P2P protocols).

Because there is no structure globally imposed upon them, unstructured networks are easy to build and allow for localized optimizations to different regions of the overlay. Also, because the role of all peers in the network is the same, unstructured networks are highly robust in the face of high rates of "churn"—that is, when large numbers of peers are frequently joining and leaving the network.

However the primary limitations of unstructured networks also arise from this lack of structure. In particular, when a peer wants to find a desired piece of data in the network, the search query must be flooded through the network to find as many peers as possible that share the data. Flooding causes a very high amount of signaling traffic in the network, uses more CPU/memory (by requiring every peer to process all  search queries), and does not ensure that search queries will always be resolved. Furthermore, since there is no correlation between a peer and the content managed by it, there is no guarantee that flooding will find a peer that has the desired data. Popular content is likely to be available at several peers and any peer searching for it is likely to find the same thing. But if a peer is looking for rare data shared by only a few other peers, then it is highly unlikely that search will be successful.

Structured networks

Overlay network diagram for a structured P2P network, using a distributed hash table (DHT) to identify and locate nodes/resources
In structured peer-to-peer networks the overlay is organized into a specific topology, and the protocol ensures that any node can efficiently search the network for a file/resource, even if the resource is extremely rare.

The most common type of structured P2P networks implement a distributed hash table (DHT), in which a variant of consistent hashing is used to assign ownership of each file to a particular peer.This enables peers to search for resources on the network using a hash table: that is, (key, value) pairs are stored in the DHT, and any participating node can efficiently retrieve the value associated with a given key.
Distributed hash tables

However, in order to route traffic efficiently through the network, nodes in a structured overlay must maintain lists of neighbors that satisfy specific criteria. This makes them less robust in networks with a high rate of churn (i.e. with large numbers of nodes frequently joining and leaving the network). More recent evaluation of P2P resource discovery solutions under real workloads have pointed out several issues in DHT-based solutions such as high cost of advertising/discovering resources and static and dynamic load imbalance.

Notable distributed networks that use DHTs include BitTorrent's distributed tracker, the Kad network, the Storm botnet, YaCy, and the Coral Content Distribution Network. Some prominent research projects include the Chord project, Kademlia, PAST storage utility, P-Grid, a self-organized and emerging overlay network, and CoopNet content distribution system. DHT-based networks have also been widely utilized for accomplishing efficient resource discovery for grid computing systems, as it aids in resource management and scheduling of applications.

Hybrid models

Hybrid models are a combination of peer-to-peer and client-server models.A common hybrid model is to have a central server that helps peers find each other. Spotify is an example of a hybrid model. There are a variety of hybrid models, all of which make trade-offs between the centralized functionality provided by a structured server/client network and the node equality afforded by the pure peer-to-peer unstructured networks. Currently, hybrid models have better performance than either pure unstructured networks or pure structured networks because certain functions, such as searching, do require a centralized functionality but benefit from the decentralized aggregation of nodes provided by unstructured networks.

Security and trust

Peer-to-peer systems pose unique challenges from a computer security perspective.

Like any other form of software, P2P applications can contain vulnerabilities. What makes this particularly dangerous for P2P software, however, is that peer-to-peer applications act as servers as well as clients, meaning that they can be more vulnerable to remote exploits.

Routing attacks

Also, since each node plays a role in routing traffic through the network, malicious users can perform a variety of "routing attacks", or denial of service attacks. Examples of common routing attacks include "incorrect lookup routing" whereby malicious nodes deliberately forward requests incorrectly or return false results, "incorrect routing updates" where malicious nodes corrupt the routing tables of neighboring nodes by sending them false information, and "incorrect routing network partition" where when new nodes are joining they bootstrap via a malicious node, which places the new node in a partition of the network that is populated by other malicious nodes.

Corrupted data and malware

See also: Data validation and Malware

The prevalence of malware varies between different peer-to-peer protocols. Studies analyzing the spread of malware on P2P networks found, for example, that 63% of the answered download requests on the Limewire network contained some form of malware, whereas only 3% of the content on OpenFT contained malware. In both cases, the top three most common types of malware accounted for the large majority of cases (99% in Limewire, and 65% in OpenFT). Another study analyzing traffic on the Kazaa network found that 15% of the 500,000 file sample taken were infected by one or more of the 365 different computer viruses that were tested for.

Corrupted data can also be distributed on P2P networks by modifying files that are already being shared on the network. For example, on the FastTrack network, the RIAA managed to introduce faked chunks into downloads and downloaded files (mostly MP3 files). Files infected with the RIAA virus were unusable afterwards and contained malicious code. The RIAA is also known to have uploaded fake music and movies to P2P networks in order to deter illegal file sharing. Consequently, the P2P networks of today have seen an enormous increase of their security and file verification mechanisms. Modern hashing, chunk verification and different encryption methods have made most networks resistant to almost any type of attack, even when major parts of the respective network have been replaced by faked or nonfunctional hosts.

Resilient and scalable computer networks

The decentralized nature of P2P networks increases robustness because it removes the single point of failure that can be inherent in a client-server based system. As nodes arrive and demand on the system increases, the total capacity of the system also increases, and the likelihood of failure decreases. If one peer on the network fails to function properly, the whole network is not compromised or damaged. In contrast, in a typical client–server architecture, clients share only their demands with the system, but not their resources. In this case, as more clients join the system, fewer resources are available to serve each client, and if the central server fails, the entire network is taken down.

Distributed storage and search

Search results for the query "software libre", using YaCy a free distributed search engine that runs on a peer-to-peer network instead making requests to centralized index servers (like Google, Yahoo, and other corporate search engines)

There are both advantages and disadvantages in P2P networks related to the topic of data backup, recovery, and availability. In a centralized network, the system administrators are the only forces controlling the availability of files being shared. If the administrators decide to no longer distribute a file, they simply have to remove it from their servers, and it will no longer be available to users. Along with leaving the users powerless in deciding what is distributed throughout the community, this makes the entire system vulnerable to threats and requests from the government and other large forces. For example, YouTube has been pressured by the RIAA, MPAA, and entertainment industry to filter out copyrighted content. Although server-client networks are able to monitor and manage content availability, they can have more stability in the availability of the content they choose to host. A client should not have trouble accessing obscure content that is being shared on a stable centralized network. P2P networks, however, are more unreliable in sharing unpopular files because sharing files in a P2P network requires that at least one node in the network has the requested data, and that node must be able to connect to the node requesting the data. This requirement is occasionally hard to meet because users may delete or stop sharing data at any point.

In this sense, the community of users in a P2P network is completely responsible for deciding what content is available. Unpopular files will eventually disappear and become unavailable as more people stop sharing them. Popular files, however, will be highly and easily distributed. Popular files on a P2P network actually have more stability and availability than files on central networks. In a centralized network a simple loss of connection between the server and clients is enough to cause a failure, but in P2P networks the connections between every node must be lost in order to cause a data sharing failure. In a centralized system, the administrators are responsible for all data recovery and backups, while in P2P systems, each node requires its own backup system. Because of the lack of central authority in P2P networks, forces such as the recording industry, RIAA, MPAA, and the government are unable to delete or stop the sharing of content on P2P systems.

Copy From

Sign In or Register to comment.


@ 2016-2017 CoinDuet, All rights reserved.CoinDuet is a open source forum on digital coin as like Bitcoin,Dogecoin,Litecoin etc.Join and create discussions,give news and announcement,share idea etc.
Powered by Utpal Sarkar.

Contact us

Get In Touch